AIM-9 Sidewinder - ED Forums
 


Notices

Reply
 
Thread Tools Display Modes
Old 01-30-2013, 01:05 AM   #1
arcivanov
Veteran
 
Join Date: Apr 2005
Posts: 4,686
Default AIM-9 Sidewinder

AIM-9X Block II прошла половину тестов на боевое применение, и за исключением одного параметра превосходит ожидания. Как сообщил NAVAIR: "анализ данных проведенный на данный момент указывает, что ракета превосходит технические требования по всем параметрам, включая захват-после-пуска".
[...]

В Block II включен data-link схожий с тем что стоит на AIM-120D, позволяющий ракете получать обновленную информацию о цели с запустившего ее самолета.
[...]

С начала испытаний (разработки и боевых) ракета отработала штатно в 21 из 22 случаев. В 17 из 22-ух запусков закончились перехватом в агрессивных сценариях, большинство из которых были сложнее чем для AIM-9X Block I. Во время испытаний на боевое применение 5 из 7 запусков закончились перехватом.

В одной из областей требуются улучшения. Перед началом боевых испытаний были найдены недоработки в поведении AIM-9X Block II в режиме пуска под большим углом с бесшлемным прицеливанием (helmetless high off-boresight, HHOBS). "Несмотря на то, что HHOBS в Block II работает хорошо, показатели снижены по сравнению с Block I и будут улучшены во время запланированной чистки и сборки ПО после завершения испытаний".

http://www.flightglobal.com/news/art...pected-381569/

PS: То что F-35 сможет выдавать AIM-9X целеуказание в 360 град сфере обзора в трех диапазонах (видимом, IR и UV) в дополнении к собственной голове AIM-9X, конечно, офигенно круто.

Last edited by arcivanov; 01-30-2013 at 01:09 AM.
arcivanov is offline   Reply With Quote
Old 08-08-2013, 02:54 PM   #2
arcivanov
Veteran
 
Join Date: Apr 2005
Posts: 4,686
Default

Raytheon докладывает (в июне), что произведено и поставлено более 5000 ракет AIM-9X Block I и Block II, причем ракета получилась очень надежная - MTBF по результатам экплуатации превышает в 3 раза требования военных. Block I более не производится с 2012 года.

Отсебятина: Простая арифметика говорит, что при 5000 тыс ракет, начале выпуска в 2003 году, и прекращении выпуска Block I в 2012, уже произведено около 500 ракет Block II.
arcivanov is offline   Reply With Quote
Old 05-09-2014, 12:10 PM   #3
arcivanov
Veteran
 
Join Date: Apr 2005
Posts: 4,686
Default Первое подтверждение способности обстрела в заднюю полусферу

Once fired, the Block II can also make a U-turn and find targets behind the aircraft within 10 miles of launch, said Martin.

http://www.seapowermagazine.org/sas/...9x-missle.html
arcivanov is offline   Reply With Quote
Old 06-29-2014, 12:28 AM   #4
arcivanov
Veteran
 
Join Date: Apr 2005
Posts: 4,686
Default

Заказ Lot 14 на 485 ракет за $223.1M, среди которых 33% USAF, 33% USN, 21% Турции, 7% Недерланды, 5% Сингапур, Кувейт и Морокко меньше 1%.

Кувейт получает одну ракету стоимостью $390k, из чего следует, что оптом она может быть еще дешевле.

http://www.defenseindustrydaily.com/...issile-011572/
arcivanov is offline   Reply With Quote
Old 08-08-2014, 11:23 PM   #5
arcivanov
Veteran
 
Join Date: Apr 2005
Posts: 4,686
Default Продолжаются апгрейды

Выделено $44М на исследования в области обновлений компонентной базы AIM-9X Block II. Замена компонентов включает систему задействования управления, блоков инерциальных измерений, процессора, исследования повышения качества детонационно-устойчивого заряда, разработки железа и летного софта версий 9.4x, 9.15x и 10.x.

https://www.defenseindustrydaily.com...issile-011572/
arcivanov is offline   Reply With Quote
Old 08-31-2014, 08:25 PM   #6
Heli
Moderator
 
Heli's Avatar
 
Join Date: Apr 2012
Posts: 13,664
Default

познавательный документ, про то что AIM-9M это не идентичная конструкция, а целое семейство ракет

Quote:
The AIM-9M missile evolution has been driven by the AIM-9L Product
Improvement Program (PIP) and developed into full-scale development, test, and
evaluation program during FY78/79. The first AIM-9M variant, the AIM-9M-1,
was fielded in FY 82. The Guidance Control Section (GCS) is the only
component unique to the AIM-9M, which, prior to the AIM-9M-8, has three Navy
variants: AIM-9M-1 or AIM-9M-3 (both use the same GCS), AIM-9M-4, and AIM-9M-
6. The AIM-9M-8 contains the latest GCS variant which improves Navy
warfighting capability over earlier AIM-9M variants to counter infrared (IR)
countermeasures (CM) from aerial threats. The first AIM-9M-8 was fielded in
FY 95
APPROVED NAVY TRAINING PLAN
FOR THE AIM-9M SIDEWINDER MISSILE SYSTEM(FOR MODELS THROUGH AIM-9M-8 ), JANUARY 1997

http://fas.org/man/dod-101/sys/missile/docs/aim-9m.pdf

Last edited by Heli; 11-29-2014 at 10:42 AM.
Heli is offline   Reply With Quote
Old 09-05-2014, 08:05 PM   #7
Heli
Moderator
 
Heli's Avatar
 
Join Date: Apr 2012
Posts: 13,664
Default

The AIM-9X is launched from an aircraft after target detection to home in on IR emissions, intercept, and destroy enemy aircraft. The missile interfaces with the aircraft through the missile launcher using an umbilical cable, a mid-body buffer connector, and three missile hangers. The AIM-9X incorporates a dual umbilical design (i.e. a modified AIM-9 “forward” umbilical cable and the AIM-9/120 “mid-body” umbilical). Using combinations of the missile’s forward and mid-body umbilicals, AIM-9X has two distinct interface configurations: digital and analog.

The digital interface configuration is invoked when the missile detects an active digital (i.e. MIL-STD-1553) interface at either the forward or mid-body umbilical aircraft/missile interface.

The analog interface configuration is invoked, in the absence of a digital interface, at both the forward and mid-body umbilical aircraft/missile interfaces.The digital interface configuration is considered the standard operational configuration. On LAU-127 (series) launchers, the AIM-9X operates in the digital interface configuration, using a dual (forward and mid-body) umbilical digital interface.

On LAU-7 (series) launchers, the AIM-9X operates in the single umbilical digital interface configuration through the forward umbilical only.
The AIM-9X incorporates the AUR concept with attached wings and control fins. The AIM-9X missile consists of a sensor/electronic Guidance Unit (GU), DSU-37/B TD, WDU-17/B warhead with internal Electronic Safe-Arm Device (ESAD), WPU-17/B or WPU-17A/B Propulsion/Steering Section (PSS), four (Mk 12 Mod 0) forward-mounted wings and four aft-mounted (BSU-101/B) control fins.

Forward composite material and aft composite material (WPU-17/B) or metal (WPU-17A/B) harness covers running along much of the lower body length of the AIM-9X AUR protects the missile wiring harness.

The tactical AIM-9X is compatible with carrier-based F/A-18C/D and F/A-18E/F aircraft equipped with the guided missile launchers LAU-7 and/or LAU-127. The launcher LAU-7D/A features a modified power supply and internal harness to accommodate MIL-STD-1553 communication.

The AIM-9X GU features an internal electrically-driven closed cycle regenerator, called a cryoengine. This eliminates the need for the high-pressure air-nitrogen charged receiver (gas) bottle or High Pressure Pure Air Generator (HiPPAG) utilized by the AIM-9M.

ASSEMBLY COMPONENTS

Guidance Unit (GU) (WGU-51/B). Provides the missile tracking, guidance, and control signals. The GU consists of three major subassemblies: (1) an IR sensor assembly for detecting the target, (2) an electronics unit that converts the detected target information to tracking and guidance command signals, and (3) center section containing the cryoengine, contact fuze, two thermal-batteries, and required harnesses and connectors.

Target Detector (TD) (DSU-36/B or DSU-37/B). The AIM-9X design modifies the existing AIM-9M TD. The TD is a narrow-beam, active optical, proximity fuze system. The TD transmits pulsed InfraRed (IR) energy through the four forward windows and an IR detector through four aft windows receives the reflected energy.

The purpose of the TD is to detect the presence of a target at distances out to the maximum effective range of the missile warhead and to generate an electrical firing signal so that the ESAD explosive train and warhead are detonated at a point where the average kill probability is maximized.

This is the same TD as the AIM-9M with the exception that the end “V” groove is removed. The forward coupling clamp, used to join the GU to the TD has been replaced with 14 cruciform recess captive screws.

Warhead. The AIM-9X uses the existing AIM-9M WDU-17/B warhead. The warhead, with the ESAD, is an integral part of the missile. The warhead is an explosive loaded, end-initiated, annular blast, titanium rod, fragmentation- type warhead comprised of a case assembly, a transfer tube assembly, a loaded warhead booster, a PBXN-3 explosive charge, and an enclosure. It detonates upon receipt of the explosive output from the ESAD.

PROPULSION/STEERING SECTION (PSS) WPU-17/B (AIM-9X P/N 2212600-10).

The propulsion/steering section WPU-17/B is composed of four major components: a modified Mk 36 Mod 11 rocket motor, a Fin Actuator Unit (FAU), Control Actuation System (CAS) Electronics, and a Jet Vane Control (JVC).

Rocket Motor (Mk 139 Mod 0). The AIM-9X initial design modifies the existing AIM-9M Mk 36 Mod 11 rocket motor. The FAU and JVC are mounted on the aft end of the modified rocket motor. The motor case serves as a mount for the three missile hangers and seven CAS Electronics and Aft Harness Cover Clamp Assemblies.

Two electrical contact buttons are in the forward hanger. When the missile is loaded on the launcher, two striker points within the launcher are in contact with the two contact buttons on the forward hanger. When the firing circuit is activated, the firing voltage is sent through the aft contact button and fires the initiator on the arm-fire assembly.

The initiator ignites the rocket motor propellant grain, thrust is developed, and the missile is launched.

The forward contact button on the AIM-9X missile is not used and has no electrical connection. A nonpropulsive weather seal to protect the propellant from the environment seals the motor nozzle. When the weather seal in the nozzle ruptures upon motor ignition, the initial small amount of thrust is insufficient to overcome the holding force of the launcher detent. The thrust then rises rapidly, driving the missile free of the launcher.

PROPULSION/STEERING SECTION (PSS) WPU-17 A/B (AIM-9X P/N 2212600-20).

The propulsion/steering section WPU-17A/B is composed of four major components: an Mk 139 Mod 1 rocket motor, an FAU, CAS Electronics, and a JVC.

Rocket Motor (Mk 139 Mod 1). The WPU-17A/B PSS is made with a newly cast rocket motor (Mk 139 Mod 1) instead of a modified rocket motor (Mk 139 Mod 0). The new Mk 139 Mod 1 rocket motor incorporates a metal aft harness cover in place of the composite cover. This new design eliminates the need for five harness cover clamp assemblies. The new metal aft harness cover is attached directly to the rocket motor tube using 18 screws and washers that mate with welded attachment points with “floating” nuts. Improvements were also made to FAU and tail platform attachment methods. All other aspects of the Mk139 Mod 1 rocket motor remain unchanged from the Mk 139 Mod 0 design; i.e. hanger attachment, SAFE-ARM handle, igniter.

SAFE-ARM Selector Handle. The SAFE-ARM selector handle is a manual safety device that prevents the inadvertent firing of the rocket motor. The device is switched to the arm position on the arming area by the ground crew prior to flight. It is the same MK 297 SAFE-ARM selector that is used on AIM-9M, although the handle is modified to allow for the new harness cover.

The handle is a “PLUS” design with four extensions. This design provides a visual confirmation of the arm/safe condition of the rocket motor. Three of the extensions are painted black and the fourth is painted white. The safe or armed condition is indicated by the position of the white extension in relation to the SAFE-ARM indication on the rocket motor harness cover decal/stencil.

Fin Actuator Unit (FAU). The FAU provides AIM-9X flight control and connects to the aft end of the rocket motor. The FAU is a thrust vector control system consisting of four movable aerodynamic tail fins and four jet vanes that direct the flow of the rocket motor exhaust. An electrically-powered direct-coupled brushless direct current (DC) motor drives each tail fin of the actuator unit. Each jet vane is slaved to the associated tail fin shaft on the same side of the missile at a 1:1 coupling ratio via a pushrod link.

Prior to launch, spring-loaded pistons lock the tail fins and jet vanes from moving. With missile battery power available, the fin unlock command fires an Electronic Explosive Device (EED) into a manifold, causing withdrawal of all four fin lock tabs by the squib/cartridge output gas-powered piston movement. A wiggle test verifies the fins are unlocked and there is positive fin control, which must occur in order for the rocket motor initiation command to be generated.

A dedicated 106 VDC thermal battery in the guidance section powers the FAU. An electronics module that mounts as a sealed unit attached to the exterior of the rocket motor case controls the FAU. The electronic harness leads forward to the guidance section and aft to the FAU. Control fin/jet vane position feedback is measured from both individual potentiometers attached to the control fin shafts (primary) and electric motor rotation state counts sensed by Hall Effect sensors (secondary). Primary feedback is provided by the absolute readings from the potentiometers. In the event the potentiometers are not providing feedback, the Hall Effect sensors measure secondary feedback.

Fins. The control fins are mounted on the aft end of the missile and work in conjunction with the jet vanes located in the thrust chamber of the missile. Four double-delta-design titanium fins in conjunction with the jet vanes are the aerodynamic control surfaces that translate servo torque into missile maneuvers. The fins and vanes are attached to wing ribs located at the aft end of the rocket motor. Each fin pair can rotate about its axis up to 30 degrees in each direction during free flight.

Jet Vane Control (JVC).
The jet vanes are in the exhaust section of the missile aft of the rocket motor. They are mechanically linked through a shaft to the control fins and provide enhanced steering capability by redirecting the exhaust gases.

The AIM-9X-2 variant contains modifications to the guidance unit, TD, and Propulsion Section. All other assembly components remain unchanged.

Guidance Unit (GU) (WGU-57/B). Provides the missile tracking, guidance, and control signals. The GU is an enhanced version of the WGU-51/B with improved Electronics Unit (EU) Circuit Card Assemblies (CCA’s) and increased system battery capabilities.

Target Detector (TD) (DSU-41/B). Contains electronics targeting enhancements and adds a data link capability to support Lock On After Launch (LOAL) capabilities.

The DSU-41/B shares no similarities with the AIM-9M or previous AIM-9X TD. Propulsion/Steering Section (PSS) WPU-18/B (AIM-9X-2 P/N 2276200-1). The propulsion/steering section WPU-18/B is composed of four major components: an Mk 139 Mod 1 rocket motor, an FAU, CAS Electronics, and a JVC. It has an electronic Ignition Safety Device (ISD) that replaces the safe-arm selector handle. This alleviates the requirement to manually safe and arm the missile.

For further information about the AIM-9 (series) and ATM-9 (series) Sidewinder guided missile, you should refer to the Sidewinder Guided Missile AIM-9M and Training Missile, NAVAIR 01-AIM9-2 and Airborne Weapons Assembly Manual, NAVAIR 11-140-6.

http://navybmr.com/study%20material/...14313A_ch3.pdf
Heli is offline   Reply With Quote
Old 01-28-2015, 02:55 PM   #8
Heli
Moderator
 
Heli's Avatar
 
Join Date: Apr 2012
Posts: 13,664
Default Block II+

Raytheon Missile Systems получила финансирование в размере 8300000 $ для дополнительных работ к ранее заключенному контакту N00019-12-C-2002
компания должна изготовить и поставить военным 5 прототипов Captive Test Missiles Block II+, а также 40 наборов ракетных двигателей для переделки тестовых ракет в конфигурацию Block II+, работы должны быть завершены к июню 2016 года

http://www.thebaynet.com/articles/01...y-26-2015.html
Heli is offline   Reply With Quote
Old 04-14-2015, 04:35 PM   #9
Heli
Moderator
 
Heli's Avatar
 
Join Date: Apr 2012
Posts: 13,664
Default



NAVAIR сообщает о достижении начальной боеготовности (initial operational capability - IOC) ракет AIM-9Х Block II, контракт на крупносерийное производство Block II, как ожидается, будет заключен летом этого года

http://www.seapowermagazine.org/stor...idewinder.html

Last edited by Heli; 10-06-2015 at 03:09 PM.
Heli is offline   Reply With Quote
Old 09-01-2015, 03:23 PM   #10
Heli
Moderator
 
Heli's Avatar
 
Join Date: Apr 2012
Posts: 13,664
Default

Quote:
Originally Posted by Heli View Post


NAVAIR сообщает о достижении начальной боеготовности (initial operational capability - IOC) ракет AIM-9Х Block II, контракт на крупносерийное производство Block II, как ожидается, будет заключен летом этого года

http://www.seapowermagazine.org/stor...idewinder.html
NAVAIR 17 августа разрешил начать полномасштабное серийное производство ракет AIM-9X Block II, до 2026 года планируется изготовить примерно 6000 ракет

http://alert5.com/2015/09/01/aim-9x-...te-production/
Heli is offline   Reply With Quote
Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump

All times are GMT. The time now is 11:17 PM. vBulletin Skin by ForumMonkeys. Powered by vBulletin®.
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.